行列式降阶法

来源:互联网 in 知识问答 2026-01-23 21:10:40

行列式降阶法是一种计算行列式的方法,也称为行列式按行(列)展开法。该方法将行列式逐步降阶,直到降为1阶行列式,然后计算其值。具体步骤如下:

1. 对于一个n阶行列式,从第一行(或第一列)开始,选取一个元素作为展开元素。

2. 对于选取的展开元素,计算其代数余子式,即去掉所在行和列后剩余元素构成的(n-1)阶行列式乘上(-1)的指数。

3. 将展开元素与其代数余子式相乘,得到展开式的一个部分。

4. 对于每个不同的展开元素,重复第2、3步,将所有部分相加得到行列式的值。

5. 如果展开元素所在的行(或列)中有零元素,则其代数余子式为0,可以跳过该元素。

6. 逐步降阶,直到计算出1阶行列式的值。

该方法的时间复杂度为O(n!),所以只适用于较小的行列式。对于较大的行列式,可以使用高斯消元法或LU分解法等更高效的方法计算。

免责声明:本站文字信息和图片素材来源于互联网,仅用于学习参考,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)

-- End --